Abstract

Alkaline phosphatase (ALP) is a crucial biomarker for clinical diagnosis, which is closely related to the physiological homeostasis regulation process of human body. And the abnormal level of ALP is associated with numerous diseases, such as liver dysfunction, bone diseases, diabetes, and so on. In order to meet the demand of personalized healthcare, it is particularly important to develop a miniaturized point-of-care testing (POCT) device for ALP detection. Herein, a portable solid-phase colorimetric sensor based on enzyme-induced metallization signal amplification strategy was constructed for ALP detection. The AuNPs modified on the glass slides acted as crystal seeds, allowing Ag+ in the solution to be reduced and deposited on the surface of AuNPs, which further formed the gold core and silver shell (Au@Ag) complex and generated visual signals. The visual signals were recorded by a smartphone and quantified using open-source ImageJ software. Under the optimal conditions, the proposed method exhibited a good linear relationship from 2.0 to 16.0 pM, and the detection limit was as low as 0.9 pM. In addition, it was further successfully applied for ALP detection in non-transparent and complex samples (milk, different types of cells). A sensitive, low cost, rapid and convenient solid-phase sensor was developed for ALP detection, which was expected to provide a promising strategy for POCT devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call