Abstract

To understand why the Pvr4 resistance of pepper against Potyvirus spp. remained durable in field conditions while virulent Potato virus Y (PVY) variants could be selected in the laboratory, we studied the molecular mechanisms which generated these variants and the consequences on viral fitness. Using a reverse genetics approach with an infectious cDNA clone of PVY, we found that the region coding for the NIb protein (RNA-dependent RNA polymerase) of PVY was the avirulence factor corresponding to Pvr4 and that a single nonsynonymous nucleotide substitution in that region, an adenosine to guanosine substitution at position 8,424 of the PVY genome (A(8424)G), was sufficient for virulence. This substitution imposed a high competitiveness cost to the virus against an avirulent PVY variant in plants devoid of Pvr4. In addition, during serial passages in susceptible pepper plants, the only observed possibility of the virulent mutant to increase its fitness was through the G(8424)A reversion, strengthening the high durability potential of the Pvr4 resistance. This is in accordance with the fact that the NIb protein is one of the most constrained proteins expressed by the PVY genome and, more generally, by Potyvirus spp., and with a previously developed model predicting the durability of virus resistances as a function of the evolutionary constraint applied on corresponding avirulence factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.