Abstract
Bacterial selectable marker genes (SMG) conferring antibiotic resistance are valuable tools in plant genetic engineering, but public concern and regulatory requirements have stimulated the development of alternative selection systems. We have previously demonstrated that a mutated Synechococcus elongatus HemL gene encoding glutamate 1-semialdehyde aminotransferase (GSA) is an efficient SMG in alfalfa. In fact, GSA is irreversibly inhibited by gabaculine (3-amino-2,3-dihydrobenzoic acid), but the mutated enzyme is gabaculine insensitive. With the aim to develop a plant derived SMG, we cloned and sequenced the Medicago sativa GSA cDNA and reproduced one of the two mutations associated with gabaculine resistance in Synechococcus, a transversion resulting in a methionine to isoleucine (M→I) substitution. This mutated gene was assessed as a SMG in tobacco and alfalfa Agrobacterium transformation, in comparison with the wild type gene. In tobacco, about 43% of the leaf explants produced green shoots, whereas in alfalfa 47% of the explants produced green embryos in the presence of 30 μM gabaculine when the M→I GSA was introduced. Escapes were absent in tobacco and only 6% in alfalfa. No effect on the plant phenotype was noticed. We propose this new SMG as a widely acceptable alternative to those currently used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.