Abstract

Dihydroneopterin aldolase (DHNA) catalyzes the conversion of 7,8-dihydroneopterin (1) to 6-hydroxymethyl-7,8-dihydropterin (4) in the folate biosynthetic pathway. Substitution of a conserved tyrosine residue at the active site of DHNA by phenylalanine converts the enzyme to a cofactor-independent oxygenase, which generates mainly 7,8-dihydroxanthopterin (6) rather than 4. 6 is generated via the same enol intermediate as in the wild-type enzyme-catalyzed reaction, but this species undergoes an oxygenation reaction to form 6. The conserved tyrosine residue plays only a minor role in the formation of the enol reaction intermediate but a critical role in the protonation of the enol intermediate to form 4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.