Abstract

A point interpolation method (PIM) is presented for stress analysis for two-dimensional solids. In the PIM, the problem domain is represented by properly scattered points. A technique is proposed to construct polynomial interpolants with delta function property based only on a group of arbitrarily distributed points. The PIM equations are then derived using variational principles. In the PIM, the essential boundary conditions can be implemented with ease as in the conventional finite element methods. The present PIM has been coded in FORTRAN. The validity and efficiency of the present PIM formulation are demonstrated through example problems. It is found that the present PIM is very easy to implement, and very flexible for obtained displacements and stresses of desired accuracy in solids. As the elements are not used for meshing the problem domain, the present PIM opens new avenues to develop adaptive analysis codes for stress analysis in solids and structures. Copyright © 2001 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.