Abstract

The widespread adoption of additive manufacturing (AM) in different industries has accelerated the need for quality control of these AM parts. Some of the complex and labor-intensive challenges associated with qualification and certification of AM parts are addressed by modeling and monitoring process conditions. Quantifying melt-track process conditions remains a significant computational challenge due to the large-scale differential between melt pool and part volumes. This work explores a novel point field (PF) driven AM model-based process metric (AM-PM) approach for calculating melt track resolved process conditions with maximal computational speed. A cylindrical Ti-6Al-4V test article with 16 equiangular zones having varied process parameters was built. The melt-track resolved AM-PMs were calculated and mapped to porosity existence for the 5.8-million-point PF of the test article. AM-PMs were calculated in 6.5 min, ~ 665 × faster than a similarly sized finite element calculation. This approach enables efficient prediction, assessment, and adjustment of AM builds.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call