Abstract
In recent years, point of interest (POI) recommendation has gained increasing attention all over the world. POI recommendation plays an indispensable role in assisting people to find places they are likely to enjoy. The exploitation of POIs recommendation by existing models is inadequate due to implicit correlations among users and POIs and cold start problem. To overcome these problems, this work proposed a social spatio-temporal probabilistic matrix factorization (SSTPMF) model that exploits POI similarity and user similarity, which integrates different spaces including the social space, geographical space and POI category space in similarity modelling. In other words, this model proposes a multivariable inference approach for POI recommendation using latent similarity factors. The results obtained from two real data sets, Foursquare and Gowalla, show that taking POI correlation and user similarity into account can further improve recommendation performance. In addition, the experimental results show that the SSTPMF model performs better in alleviating the cold start problem than state-of-the-art methods in terms of normalized discount cumulative gain on both data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.