Abstract

The solution of large-scale matrix algebraic Riccati equations is important for instance in control design and model reduction and remains an active area of research. We consider a class of matrix algebraic Riccati equations (AREs) arising from a linear system along with a weighted inner product. This problem class often arises from a spatial discretization of a partial differential equation system. We propose a projection method to obtain low rank solutions of AREs based on simulations of linear systems coupled with proper orthogonal decomposition. The method can take advantage of existing (black box) simulation code to generate the projection matrices. We also develop new weighted norm residual computations and error bounds. We present numerical results demonstrating that the proposed approach can produce highly accurate approximate solutions. We also briefly discuss making the proposed approach completely data-based so that one can use existing simulation codes without accessing system matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.