Abstract

Avalanche photodiode (APD) has been intensively investigated as a promising candidate to replace the bulky and fragile photomultiplier tube (PMT) for weak light detection. However, the performance of most available APDs is barely satisfactory compared to that of the PMTs because of inter-valley scattering. Here, we demonstrate a PMT-like APD based on GaN/AlN periodically stacked-structure (PSS), in which the electrons encounter a much less inter-valley scattering during transport than holes. Uni-directional avalanche takes place with a high efficiency. According to our simulations based on a PSS with GaN (10 nm)/AlN (10 nm) in each period, the probability for electrons to trigger ionization in each cycle can reach as high as 80%, while that for holes is only 4%. A record high and stable gain (104) with a low ionization coefficient ratio of 0.05 is demonstrated under a constant bias in a prototype device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.