Abstract

Permanent magnet synchronous motor (PMSM) has gained more interest recently in industrial applications. Digital hardware solutions such as field programmable gate arrays (FPGAs) are the most preferred methods for controlling PMSM drivers. This paper presents an implementation of a current control system for PMSM based on FPGA. Encoder-based speed and position detection method has been used in proposed hardware. The whole system has been modeled and simulated in system level using MATLAB/SIMULINK. Hardware architecture for all computational blocks is implemented using Verilog HDL. The hardware architecture has been successfully synthesized and implemented on Altera Cyclone II FPGA. Proposed system architecture and computational blocks are described and system level and RTL simulation results are presented. Simulation results show that the total computation cycle time of implemented system on Altera Cyclone II FPGA is 456ns. Keywords : PMSM, FPGA, Incremental encoder, CORDIC, Hysteresis Current Control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.