Abstract

AbstractIn this paper, we obtain a variation of the Pólya–Vinogradov inequality with the sum restricted to a certain height. Assume $\chi $ to be a primitive character modulo q, $ \epsilon>0$ and $N\le q^{1-\gamma }$ , with $0\le \gamma \le 1/3$ . We prove that $$ \begin{align*} |\sum_{n=1}^N \chi(n) |\le c (\tfrac{1}{3} -\gamma+\epsilon )\sqrt{q}\log q \end{align*} $$ with $c=2/\pi ^2$ if $\chi $ is even and $c=1/\pi $ if $\chi $ is odd. The result is based on the work of Hildebrand and Kerr.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.