Abstract
The multinomial language model has been one of the most effective models of retrieval for more than a decade. However, the multinomial distribution does not model one important linguistic phenomenon relating to term dependency—that is, the tendency of a term to repeat itself within a document (i.e., word burstiness). In this article, we model document generation as a random process with reinforcement (a multivariate Pólya process) and develop a Dirichlet compound multinomial language model that captures word burstiness directly. We show that the new reinforced language model can be computed as efficiently as current retrieval models, and with experiments on an extensive set of TREC collections, we show that it significantly outperforms the state-of-the-art language model for a number of standard effectiveness metrics. Experiments also show that the tuning parameter in the proposed model is more robust than that in the multinomial language model. Furthermore, we develop a constraint for the verbosity hypothesis and show that the proposed model adheres to the constraint. Finally, we show that the new language model essentially introduces a measure closely related to idf, which gives theoretical justification for combining the term and document event spaces in tf-idf type schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.