Abstract

In the framework of quantile regression, local linear smoothing techniques have been studied by several authors, particularly by Yu and Jones (J Am Stat Assoc 93:228–237, 1998). The problem of bandwidth selection was addressed in the literature by the usual approaches, such as cross-validation or plug-in methods. Most of the plug-in methods rely on restrictive assumptions on the quantile regression model in relation to the mean regression, or on parametric assumptions. Here we present a plug-in bandwidth selector for nonparametric quantile regression that is defined from a completely nonparametric approach. To this end, the curvature of the quantile regression function and the integrated squared sparsity (inverse of the conditional density) are both nonparametrically estimated. The new bandwidth selector is shown to work well in different simulated scenarios, particularly when the conditions commonly assumed in the literature are not satisfied. A real data application is also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.