Abstract

AbstractThis paper presents a cooperative traffic control strategy to increase the capacity of nonrecurrent bottlenecks such as work zones by making full use of the spatial resources upstream of work zones. The upstream area is divided into two zones: the regulation and the merging areas. The basic logic is that a large gap is more efficient in accommodating merging vehicles than several small and scattered gaps with the same total length. In the regulation area, a nonlinear programming model is developed to balance both traffic capacity improvements and safety risks. A two‐step solving algorithm is proposed for finding optimal solutions. In the merging area, the sorting algorithm is used to design lane‐changing trajectories based on the regulated platoons. A case study is conducted, and the results indicate that the proposed model is able to significantly improve work zone capacity with minor disturbances to the traffic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.