Abstract

Recent strides in nanotechnology have given rise to nanozymes, nanomaterials designed to emulate enzymatic functions. Despite their promise, challenges such as batch-to-batch variability and limited atomic utilization persist. This study introduces Pt(Glu)2, a platinum glutamic acid complex, as a versatile small-molecule peroxidase mimic. Synthesized through a straightforward method, Pt(Glu)2 exhibits robust catalytic activity and stability. Steady-state kinetics reveal a lower Km value compared to that of natural enzymes, signifying strong substrate affinity. Pt(Glu)2 was explored for controllable chemical modification and integration into cascade reactions with natural enzymes, surpassing other nanomaterials. Its facile synthesis and seamless integration enhance cascade reactions beyond the capabilities of nanozymes. In biosensing applications, Pt(Glu)2 enabled simultaneous detection of cholesterol and alkaline phosphatase in human serum with high selectivity and sensitivity. These findings illustrate the potential of small molecule mimetics in catalysis and biosensing, paving the way for their broader applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call