Abstract

Botulinum neurotoxicity is characterized by peripheral neuromuscular blockade/flaccid paralysis that can lead to respiratory failure and ultimately death. Current therapeutic options provide relief in a pre-exposure scenario, but there are no clinically approved postexposure medical countermeasures. Here, we introduce a platform that utilizes a combination of a toxin sequestering agent and a pharmacological antagonist to ablate botulinum neurotoxicity in a well-defined mouse lethality assay. The platform was constructed to allow for ready exchange of sequestering agent and/or pharmacological antagonist for therapeutic optimization. As such, we attempted to improve upon the pharmacological antagonist, a potassium channel blocker, 3,4-diaminopyridine, through a prodrug approach; thus, a complete kinetic decomposition pathway is described. These experiments provide the first proof-of-principle that a synergistic combination strategy can be used to reduce toxin burden in the peripheral using a sequestering antibody, while restoring muscle action via a pharmacological small molecule antagonist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.