Abstract

Solutions to the partial differential equations that describe acoustic problems can be found by analytical, numerical and experimental techniques. Within arbitrary domains and for arbitrary initial and boundary conditions, all solution techniques require certain assumptions and simplifications. It is difficult to estimate the precision of a solution technique. Due to the lack of a common process to quantify and report the performance of the solution technique, a variety of ways exists to discuss the results with the scientific community. Moreover, the absence of general reference results does hamper the validation of newly developed techniques. Over the years many researchers in the field of computational acoustics have therefore expressed the need and wish to have available common benchmark cases. This contribution is intended to be the start of a long term project, about deploying benchmarks in the entire field of computational acoustics. The platform is a web-based database, where cases and results can be submitted by all researchers and are openly available. Long-term maintenance of this platform is ensured. As an example of good practice, this paper presents a framework for the field of linear acoustic. Within this field, different categories are defined – as bounded or unbounded problems, scattering or radiating problems and time-domain as well as frequency-domain problems – and a structure is proposed how to describe a benchmark case. Furthermore, a way of reporting on the used solution technique and its result is suggested. Three problems have been defined that demonstrate how the benchmark cases are intended to be used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.