Abstract

The near-tip stress and strain fields of small cracks in power-law hardening materials are investigated under plane-stress, general yielding, and mixed mode I and II conditions by finite element analyses. The characteristics of the near-tip strain fields suggest that the experimental observations of shallow surface cracks (Case A cracks) propagating in the maximum shear strain direction can be explained by a fracture mechanics crack growth criterion based on the maximum effective strain of the near-tip fields for small cracks under general yielding conditions. The constant effective stress contours representing the intense straining zones near the tip are also presented. The results of the J integral from finite element analyses are used to correlate to a fatigue crack growth criterion for Case A cracks. Based on the concept of the characterization of fatigue crack growth by the cyclic J integral, the trend of constant J contours on the Γ-plane for Case A cracks compares well with those of constant fatigue life and constant crack growth rate obtained from experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.