Abstract
To investigate the feasibility of β-tricalcium phosphate (TCP)/gelatine scaffold combined with allogeneic adipose-derived stem cells (ASCs) to repair hole shape defect, third-passage ASCs were seeded onto composite scaffolds to prepare an ASC-β-TCP/gelatine tissue-engineered bone to pack into the rabbit cavernous bone defects of experimental groups. In animal models, the bone defect area was completely filled and difficult to recognize in the experimental group at 12 weeks post-surgery by gross observation and radiographic examination. The average bone mineral density value of them was higher than that of the control group. Because of the biocompatibility with allogenic ASCs and the osteoconductivity of β-TCP/gelatine scaffolds, β-TCP/gelatine is suitable as a plastic scaffold for the ASC-seeded tissue-engineered bone to repair cavernous defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.