Abstract

Surface plasmon polaritons (SPPs) are extremely sensitive to the surrounding refractive index and have found important applications in ultrasensitive label-free sensing. Reducing the linewidth of an SPP mode is an effective way to improve the figure of merit (FOM) and hence the sensitivity of the plasmonic mode. Many efforts have been devoted to achieving a narrow linewidth by mode coupling, which inevitably results in an asymmetrical lineshape compromising the performance. Instead, the SPP modes are directly narrowed by elaborately engineering periodic plasmonic structures with minimized feature sizes to effectively reduce the radiative losses. A narrow linewidth smaller than 8 nm is achieved over a wide wavelength ranging from 600 to 960 nm and a minimum full width at half maximum of 3 nm at 960 nm. Benefiting from the almost perfect Lorentzian lineshape and the extremely narrow linewidth, a record FOM value of 730 is obtained. The sensor is capable of detecting bovine serum albumin with an ultralow concentration of 10-10 m. The sensor has great potential for practical application for its ultrahigh FOM, broad working wavelength, and ease of high-throughput fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.