Abstract

Interactions between substrate and plasmonic nanostructures can give rise to unique optical properties and influence performance in plasmonic biosensing applications. In this study, a substrate with low refractive index and roughness based on flower-like alumina-coated etched aluminum foil (f-Al2 O3 /e-Al) has been fabricated. Silver@silica (Ag@SiO2 ) nanocubes (NCs) assemble in an edge-edge configuration when deposited on this substrate. The rough surface texture of f-Al2 O3 /e-Al provides a pathway for coupling of incident light to surface plasmons. The Ag@SiO2 /f-Al2 O3 /e-Al substrate exhibits a coupling efficiency of laser light sources into surface plasmon hotspots for both surface-enhanced Raman scattering (SERS) and metal-enhanced photoluminescence (MEPL). Moreover, the shelf life of this substrate is significantly improved due to a reduction in oxygen diffusion rate mediated by the ultrathin silica spacer and the flower-like Al2 O3 dielectric layer. Creatinine and flavin adenine dinucleotide are biomolecules present in human blood and urine. With advanced label-free SERS and MEPL techniques, it is possible to detect these biomarkers in urine, allowing cheap, noninvasive, yet sensitive analysis. The approach explored in this work can be developed into a powerful encoding tool for high-throughput bioanalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.