Abstract

The determination of nanoscale distances or distance changes necessitates a nanoscale ruler. In the present paper, distance dependence of particle temperature in an optically heated gold nanoparticle pair is quantitatively investigated to explore the possibility of creating a plasmon ruler based on this effect. The two origins of the distance-dependence, i.e., electromagnetic coupling and thermal accumulative effect, are studied. For the particle temperature, a scaling behavior is found, and it suggests that the decay of particle temperature with the interparticle gap for different particle sizes follows a common exponential decay equation. This scaling behavior is qualitatively explained with a simple dipolar-coupling model combined with a point heat source interaction model. On the basis of this scaling behavior of absorption power, we further establish a plasmon ruler equation relating the particle temperature and the interparticle distance. Our findings can serve as an excellent guideline for designing and optimizing temperature-based plasmon rulers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call