Abstract
The Voyager Plasma Wave System (PWS) will provide the first direct information on wave-particle interactions and their effects at the outer planets. The data will give answers to fundamental questions on the dynamics of the Jupiter and Saturn magnetospheres and the properties of the distant interplanetary medium. Basic planetary dynamical processes are known to be associated with wave-particle interactions (for instance, solar wind particle heating at the bow shock, diffusion effects that allow magnetosheath plasma to populate the magnetospheres, various energization phenomena that convert thermal plasma of solar wind origin into trapped radiation, and precipitation mechanisms that limit the trapped particle populations). At Jupiter, plasma wave measurements will also lead to understanding of the key processes known to be involved in the decameter bursts such as the cooperative mechanisms that yield the intense radiation, the observed millisecond fine-structure, and the Io modulation effect. Similar phenomena should be associated with other planetary satellites or with Saturn's rings. Local diagnostic information (such as plasma densities) will be obtained from wave observations, and the PWS may detect lightning whistler evidence of atmospheric electrical discharges. The Voyager Plasma Wave System shares the 10-meter PRA antenna elements, and the signals are processed with a 16-channel spectrum analyzer, covering the range 10 Hz to 56 kHz. At selected times during the planetary encounters, the PWS broadband channel will operate with the Voyager video telemetry link to give complete electric field waveforms over the frequency range 50 Hz to 10 kHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.