Abstract

AbstractWildfire emission inventories are usually applied with biome‐scale emission factors for atmospheric modeling. However, emission factors measured for different plant species vary substantially within the same biome. We apply the species‐specific emission factors and refine the Fire Emission Inventory‐northern Eurasia (FEI‐NE), and derive the wildfire black carbon emission inventory in northern Eurasia from 2002 to 2015. Our new inventory produces 61% more black carbon emissions than current estimates based on Global Fire Emission Database (GFED) and 33% less than FEI‐NE. Model simulations with different inventories are compared with ground‐based and satellite retrievals of aerosol absorption optical depth (AAOD). Compared with the Ozone Monitoring Instrument, the normalized root mean square deviation of AAOD over northern Eurasia is reduced from 1.0 under FEI‐NE to 0.95 through application of the new inventory. This study reveals the importance of applying sub‐biome‐scale emission factors for wildfire inventories development and revisiting emissions uncertainty in atmospheric modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call