Abstract

The unique double fertilisation mechanism in flowering plants depends upon a pair of functional sperm cells. During male gametogenesis, each haploid microspore undergoes an asymmetric division to produce a large, non-germline vegetative cell and a single germ cell that divides once to produce the sperm cell pair. Despite the importance of sperm cells in plant reproduction, relatively little is known about the molecular mechanisms controlling germ cell proliferation and specification. Here, we investigate the role of the Arabidopsis male germline-specific Myb protein DUO POLLEN1, DUO1, as a positive regulator of male germline development. We show that DUO1 is required for correct male germ cell differentiation including the expression of key genes required for fertilisation. DUO1 is also necessary for male germ cell division, and we show that DUO1 is required for the germline expression of the G2/M regulator AtCycB1;1 and that AtCycB1:1 can partially rescue defective germ cell division in duo1. We further show that the male germline-restricted expression of DUO1 depends upon positive promoter elements and not upon a proposed repressor binding site. Thus, DUO1 is a key regulator in the production of functional sperm cells in flowering plants that has a novel integrative role linking gametic cell specification and cell cycle progression.

Highlights

  • The gametes of flowering plants are formed by discrete haploid gametophyte structures consisting of only a few cells that develop within the diploid reproductive floral organs

  • We show that DUO POLLEN1 (DUO1) is required for the expression of the Arabidopsis G2/M regulator CyclinB1;1 (AtCycB1;1) in the male germline and that AtCycB1:1 can partially rescue defective germ cell division in duo1

  • We have shown that DUO1 is both necessary and sufficient for the expression of several male germline genes including AtGCS1 that is required for gamete fusion [13], DUO1 has a major role in the specification of functional male gametes

Read more

Summary

Introduction

The gametes of flowering plants are formed by discrete haploid gametophyte structures consisting of only a few cells that develop within the diploid reproductive floral organs. In contrast to germline cells in metozoans [3], angiosperm male germ cells do not undergo regenerative stem cell divisions, but divide once to form a pair of sperm cells. These sperm cells are delivered to the embryo sac via the pollen tube, where they fuse with egg and central cells to produce embryo and endosperm respectively. This process of double fertilization depends upon two functional sperm cells and is considered one of the major advances in the evolutionary success of flowering plants.

Author Summary
Conclusions
Findings
Materials and Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.