Abstract

Plant growth is inevitably affected by diseases, and one effective method of disease detection is through the observation of leaf changes. To solve the problem of disease detection in complex backgrounds, where the distinction between plant diseases is hindered by large intra-class differences and small inter-class differences, a complete plant-disease recognition process is proposed. The process was tested through experiments and research into traditional and deep features. In the face of difficulties related to plant-disease classification in complex backgrounds, the advantages of strong interpretability of traditional features and great robustness of deep features are fully utilized, and include the following components: (1) The OSTU algorithm based on the naive Bayes model is proposed to focus on where leaves are located and remove interference from complex backgrounds. (2) A multi-dimensional feature model is introduced in an interpretable manner from the perspective of traditional features to obtain leaf characteristics. (3) A MobileNet V2 network with a dual attention mechanism is proposed to establish a model that operates in both spatial and channel dimensions at the network level to facilitate plant-disease recognition. In the Plant Village open database test, the results demonstrated an average SEN of 94%, greater than other algorithms by 12.6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.