Abstract

Itching is the most frequent pathology in dermatology that has significant impacts on people's mental health and social life. Transient receptor potential vanilloid 3 (TRPV3) channel is a promising target for treating pruritus. However, few selecetive and potent antagonists have been reported. This study was designed to identify selective TRPV3 antagonist and elucidate its anti-pruritus pharmacology. FlexStation and calcium fluorescence imaging were conducted to track the functional compounds. Whole-cell patch clamp was used to record itch-related ion channel currents. Homologous recombination and site-directed mutagenesis were employed to construct TRPV3 channel chimeras and point mutations for exploring pharmacological mechanism. Mouse models were used for in vivo anti-pruritus assay. An acridone alkaloid (citrusinine-II) was purified and characterized from Atalantia monophylla. It directly interacts with Y564 within S4 helix of TRPV3 to selectively inhibit the channel with a half maximal inhibitory concentration (IC50 ) of 12.43 μM. Citrusinine-II showed potential efficacy to attenuate both chronic and acute itch. Intradermal administration of citrusinine-II (143 ng/skin site) nearly completely inhibited itch behaviours. It also shows significant analgesic effects. Little side effects of the compound are observed. By acting as a selective and potent inhibitor of TRPV3 channel, citrusinine-II shows valuable therapeutic effects in pruritus animal models and is a promising candidate drug and/or lead molecule for the development of anti-pruritus drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call