Abstract

Continuous efforts have been made to move towards maintaining the beneficial anti-inflammatory functions of glucocorticoids (GCs) while minimizing side effects. Here, we investigated the selective glucocorticoid receptor (GR) modulator-like properties of a plant-derived compound caesaldekarin e (CA-e). The therapeutic efficacy of CA-e was evaluated in several mouse models, including dextran sulfate sodium-induced colitis, ovalbumin-induced lung allergic inflammation, imiquimod-induced psoriasis-like skin inflammation and skin atrophy. The action of CA-e targeting the GR was analysed using molecular docking, cellular thermal shift assays and microscale thermophoresis. Other methods included DNA-protein pull-down assays and mass spectrometry. CA-e selectively inhibited positive GC response element ((+) GRE)-mediated direct transactivation while maintaining and even enhancing the anti-inflammatory effects of treatment with dexamethasone. CA-e, alone and in combination with dexamethasone, efficiently alleviated inflammation in several mouse models with milder side effects compared with dexamethasone alone. Mechanistically, CA-e inhibited the formation of dimers by binding to the dimerization interface located in the ligand-binding domain of GR and facilitated embryonic ectoderm development that is involved in the regulation of transcriptional repression to compete for binding to (+) GRE, eventually leading to the repression of (+) GRE-regulated genes. In addition, CA-e repressed NF-κB-dependent genes by enhancing the interaction between GR and p65. Our results reveal that CA-e is a novel GR modulator with strong potency to attenuate the side effects of GC therapy and can be used as a potential molecular tool for deciphering GR signalling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call