Abstract

We present a plane strain finite element model for simulation of the development of process-induced deformation during autoclave processing of complex-shaped composite structures. A “cure-hardening, instantaneously linear elastic” constitutive model is employed to represent the mechanical behaviour of the composite matrix resin, and micromechanics models are used to determine composite ply mechanical properties and behaviour, including thermal expansion and cure-shrinkage. Structures with multiple composite and non-composite components can be simulated through the use of such strategies as adaptive time-stepping and incorporation of multiple composite plies into each finite element. The effect of process tooling can also be directly modelled through simulation of tool/part interfaces and post-processing tool removal. Integration of the residual deformation model with models for heat transfer and resin cure and resin flow permits analysis of all major identified sources of process-induced deformation during the autoclave process. Model application is demonstrated through prediction of process-induced deformation of a number of variations of a simple L-shaped laminate. The model is shown to provide accurate predictions of both spring-back angle and warped shape of the final part.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call