Abstract

Deployable structures are widely used in space applications such as solar arrays and antennas. Recently, inspired by origami, more deployable structures have been developed. This paper outlined a novel design scheme for deployable structures by taking a plane linkage as an origami unit with a large deployable ratio. The mountain and valley (M-V) crease assignment and kinematics of the plane linkage were analyzed. Physical interference in the folding progress was discovered geometrically and resolved by the split-vertex technique. Finally, tessellation of the derived pattern was successfully used to create a large-deployable-ratio structure, which was found to exhibit considerable potential in future space applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.