Abstract

Abstract This work proposes a novel grasp detection method, the Efficient Grasp Aware Network (EGA-Net), for robotic visual grasp detection. Our method obtains semantic information for grasping through feature extraction. It efficiently obtains feature channel weights related to grasping tasks through the constructed ECA-ResNet module, which can smooth the network’s learning. Meanwhile, we use concatenation to obtain low-level features with rich spatial information. Our method inputs an RGB-D image and outputs the grasp poses and their quality score. The EGA-Net is trained and tested on the Cornell and Jacquard datasets, and we achieve 98.9% and 95.8% accuracy, respectively. The proposed method only takes 24 ms for real-time performance to process an RGB-D image. Moreover, our method achieved better results in the comparison experiment. In the real-world grasp experiments, we use a 6-degree of freedom (DOF) UR-5 robotic arm to demonstrate its robust grasping of unseen objects in various scenes. We also demonstrate that our model can successfully grasp different types of objects without any processing in advance. The experiment results validate our model’s exceptional robustness and generalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.