Abstract

The rational design of photosensitizers with rapid cellular uptake and dual-organelle targeting ability is essential for enhancing the efficacy of photodynamic therapy (PDT). However, achieving this goal is a great challenge. In this paper, a novel axial piperazine substituted (PIP) silicon phthalocyanine (PIP-SiPc) has been synthesized. The PIP substitution significantly improved the cellular uptake of PIP-SiPc in MCF-7 breast cancer cells, as demonstrated by two-photon fluorescence imaging combined with fluorescence correlation spectroscopy. Additionally, PIP-SiPc was able to target both mitochondria and lysosomes simultaneously. Notably, PIP-SiPc exhibited remarkable singlet oxygen generation ability, leading to apoptosis in cancer cells upon irradiation, with an IC50 value of only 0.2 µM. These findings highlight the effectiveness of PIP-SiPc as a multifunctional photosensitizer for PDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.