Abstract

An 8X8-bit multiplier test circuit developed in a 1-/spl mu/m NMOS technology is described. To achieve a high throughput rate, extensive pipelining is used in a semi-systolic fashion. It is shown that this saves area and allows for shorter cycle times compared to a pure systolic array. Problems with widely distributed lines (broadcasting) are avoided by a novel carry-save-adder cell. The data inputs and outputs are ECL compatible. The circuit contains 5480 MOSFET's in an active area of 0.6 mm/sup 2/. Effective channel lengths of 0.9 and 1.1 /spl mu/m are utilized for the enhancement and depletion transistors with a gate oxide thickness of 12.5 nm. The power dissipation is 1.5 W at a supply voltage of 3 V. The test chip operates up to a clock frequency of 330 MHz at room temperature and up to 600 MHz with liquid nitrogen cooling. This demonstrates the applicability of large-scale integrated MOS circuits in a frequency range of several hundred megahertz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call