Abstract
Background: At birth, the human intestine is colonized by a complex community of microorganisms known as gut microbiota. These complex microbial communities that inhabit the gut microbiota are thought to play a key role in maintaining host physiological homeostasis. For this reason, correct colonization of the gastrointestinal tract in the early stages of life could be fundamental for human health. Furthermore, alterations of the infant microbiota are correlated with the development of human inflammatory diseases and disorders. In this context, the possible relationships between intestinal microbiota and body composition during infancy are of great interest. Methods: In this study, we have performed a pilot study based on 16S rRNA gene profiling and metagenomic approaches on repeatedly measured data on time involving a cohort of 41 Italian newborns, which is aimed to investigate the possible correlation between body fat mass percentage (FM%) and the infant gut microbiota composition. Results and conclusion: The taxonomical analysis of the stool microbiota of each infant included in the cohort allowed the identification of a specific correlation between intestinal bacteria, such as Bifidobacterium and Veillonella, and the increase in FM%. Moreover, the analysis of the infant microbiome's metabolic capabilities suggested that the intestinal microbiome functionally impacts the human host and its possible influence on host physiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.