Abstract
Environmental exposures to chemicals can disrupt gene expression, and the effects could be mediated by methylation. This investigation focused on methylation of genes associated with exposure to metals. Mother–child pairs from three locations in Montana were recruited, and buccal cells were collected for genome-wide methylation assay. Four pairs were from Butte, where there is mining and a Superfund site, four pairs were from Anaconda with a Superfund site, and four pairs were from Missoula with neither a mine nor a Superfund site. Principal component analysis, linear mixed models, hierarchical clustering and heatmap, and gene set enrichment analysis were used to visualize the profiles, identify the top associated methylation loci, and investigate the involved pathways. Distinctly higher or lower methylation in samples from Butte were found at the top differentially methylated loci. The 200 genes harboring the most hypermethylated loci were significantly enriched in genes involved in actin cytoskeleton regulation, ABC transporters, leukocyte transendothelial migration, focal adhesion, and adherens junction, which plays a role in pathogenesis of disease, including autism spectrum disorders. This study lays a foundation for inquiry about genetic changes associated with environmental exposure to metals for people living in proximity to Superfund and open pit mining.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10653-022-01217-9.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.