Abstract

In this paper, we propose a pilot study for transcatheter aortic valve implantation guided by an augmented magnetic tracking system (MTS) with a dynamic aortic model and intra-operative ultrasound (US) images. The dynamic 3D aortic model is constructed from the preoperative 4D computed tomography, which is animated according to the real-time electrocardiograph (ECG) input of patient. Before the procedure, the US probe calibration is performed to map the US image coordinate to the tracked device coordinate. A temporal alignment is performed to synchronize the ECG signals, the intra-operative US image and the tracking information. Thereafter, with the assistance of synchronized ECG signals, the spatial registration is performed by using a feature-based registration. Then the augmented MTS guides the surgeon to confidently position and deploy the transcatheter aortic valve prosthesis to the target. The approach was validated by US probe calibration evaluation and animal study. The US calibration accuracy achieved [Formula: see text], whereas in the animal study on three porcine subjects, fiducial, target, deployment distance and tilting errors reached [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], respectively. Our pilot study has revealed that the proposed approach is feasible and accurate for delivery and deployment of transcatheter aortic valve prosthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call