Abstract

This pilot study describes a three-stage continuous process for treating landfill leachate containing significant concentrations of recalcitrant organic substances. The proposed technological scheme consisted of an activated sludge pre-treatment combined with a Fenton-like process enhanced by continuous sludge reuse and followed by an activated sludge post-oxidation. Biological pre-treatment removed >99, 86, >99, 83 and 86 % of BOD7, COD, NH4 +–N, phenols and the sum of lignin and tannins, respectively. Operational conditions in the ferric sludge-catalysed Fenton-like process stage were carefully adjusted in order to maintain the efficacy and practicability of combined treatment scheme. Although the application of ferric sludge as a catalyst in the Fenton-like oxidation reduced COD removal efficiency by 32 % as compared to the conventional Fenton process, lower process efficiency was compensated by reducing the water exchange ratio to 50 % without increasing the consumption of reagents. Moreover, an intermittent addition (added to every second treatment cycle) of fresh ferrous iron catalyst at a H2O2/Fe2+ w/w ratio of 20/1 increased the BOD7/COD ratio from 0.04 to 0.32 and resulted in 60 % COD removal. A cyclic addition (added to every treatment cycle) of the same amount of catalyst increased the BOD7/COD ratio from 0.09 to 0.32, and a 10 % higher COD removal efficiency as compared to intermittent catalyst addition was achieved. Finally, biological post-treatment of the leachate resulted in more than 95 % removal of each measured parameter. Overall, the combined technological scheme with continuous ferric sludge reuse in the Fenton-like stage proved promising alternative for landfill leachate treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.