Abstract

Brine disposal is a major drawback for seawater desalination. Membrane distillation (MD) is an emerging technology to treat a high saline water including brine disposal instead of reverse osmosis, multi-stage flash and multi-effect distillation. This study investigated a pilot scale of a spiral-wound air gap MD (AGMD) module and evaluated its efficiency. A pilot-scale AGMD module with design production capacity of 10 m3/d was operated. Experiments with varying flow velocity showed increasing trend of water vapor flux as flow velocity increases. The temperature is one of the significant points in maximizing water permeate vapor flux in MD. Increasing temperature from 65 °C to 75 °C in evaporator channel has increased flux from 0.59 to 1.15 L/m2/h. Under various conditions, specific thermal energy consumption (STEC) and gained output ratio (GOR) was used to analyze energy efficiency. The pilot plant showed high GOR value in spite of a limited heating and cooling source available at the site. The highest GOR achieved was 3.54 with STEC of 182.78 kWh/m3. This study provides an overview of operation experience and its data analysis related to temperature, concentration, flow rate and energy supply.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.