Abstract

Abstract This study examines the possibilities of sensor-instrumented training (SIT) in mid-distance running training sessions. Within this framework, variations of ground contact time (GCT) between straight and curved running, as well as GCT as a fatigue indicator, are explored. Seven experienced runners, with two elite female athletes, participated in two training protocols: 15 sets of 400 m with 1-minute rest and five sets of 300 m with 3-minute rest. GCT was calculated using two inertial measurement units (IMU) attached to the athletes’ feet. The running speed of all athletes was measured with wearable GPS devices. GCT showed variations between inner and outer feet, notably during curve running (300m: 2.56%; 400m: 2.35%). However, for the 300m runs, statistically insignificant GCT differences were more pronounced in straight runs (3.54%) than in curve runs (2.56%), contrasting with the typical assumption of higher differences in curve running. A fatigue-indicating pattern is visible in GCT, as well as speed curves. Other data of this study are consistent with prior research that has observed differences between the inner and outer foot during curve running, while our understanding of the development throughout the training session is enhanced. Using SIT can be a valuable tool for refining curve running technique. By incorporating novel sensing technology, the possibilities enhance our understanding of running kinematics and offer an excellent application of SIT in sports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.