Abstract

To evaluate and determine the performance of a partially automated as well as a fully automated closed-loop fluid resuscitation system during states of absolute and relative hypovolemia. Prospective experimental trial. Research laboratory. Five adult Beagle dogs. Isoflurane anesthetized mechanically ventilated dogs were subjected to absolute hypovolemia (controlled: 2 trials; uncontrolled: 3 trials), relative hypovolemia (2 trials), and the combination of relative and absolute controlled hypovolemia (2 trials). Controlled and uncontrolled hypovolemia were produced by withdrawing blood from the carotid or femoral artery. Relative hypovolemia was produced by increasing the isoflurane concentration (1 trial) or by infusion of intravenous sodium nitroprusside (1 trial). Relative hypovolemia combined with controlled absolute hypovolemia was produced by increasing the isoflurane concentration (1 trial) and infusion of IV sodium nitroprusside (1 trial). Hemodynamic parameters including stroke volume variation (SVV) were continuously monitored and recorded in all dogs. A proprietary closed-loop fluid administration system based on fluid distribution and compartmental dynamical systems administered a continuous infusion of lactated Ringers solution in order to restore and maintain SVV to a predetermined target value. A total of 9 experiments were performed on 5 dogs. Hemodynamic parameters deteriorated and SVV increased during controlled or uncontrolled hypovolemia, relative hypovolemia, and during relative hypovolemia combined with controlled hypovolemia. Stroke volume variation was restored to baseline values during closed-loop fluid infusion. Closed-loop fluid administration based on IV fluid distribution and compartmental dynamical systems can be used to provide goal directed fluid therapy during absolute or relative hypovolemia in mechanically ventilated isoflurane anesthetized dogs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.