Abstract

The purpose of this study was to compare autoregulation of retinal arteriolar and venular blood flow in patients with glaucoma, glaucoma suspect participants, and control participants using erythrocyte mediated velocimetry. This prospective cohort pilot study included 7 eyes of 5 participants with glaucoma, 15 eyes of 8 glaucoma suspect participants, and 11 eyes of 6 control participants. Mean erythrocyte velocity in retinal arterioles and venules was measured using erythrocyte mediated velocimetry at room air and after oxygen supplementation. Change in erythrocyte velocity was compared among all groups using generalized estimating equations. In total, 64 vessels (18 with glaucoma, 31 that were glaucoma suspect, and 15 controls) of 33 eyes of 19 participants were analyzed. There was no significant difference in baseline velocities in arterioles or venules among the three groups. With induction of hyperoxia, mean arterial erythrocyte velocity decreased in glaucoma (-7.2 ± 13.7%), which differed from controls and glaucoma suspects where erythrocyte velocity increased with hyperoxia by 4.6 ± 13.3% (P = 0.002) and 7.2 ± 21.7% (P = 0.03), respectively. A higher baseline arteriolar velocity (β = -3.9% per mm/s, P = 0.002), glaucoma diagnosis (β = -21.1%, P = 0.03), and White race (β = -20.0%, P = 0.01) were associated with decreased velocity in response to arterial hyperoxia. Hyperoxia increased erythrocyte velocity in control and glaucoma suspect participants, but decreased erythrocyte velocity in glaucoma participants, possibly due to impaired autoregulation. Baseline velocity, glaucoma diagnosis, and White race were associated with a decrease in velocity with induction of hyperoxia. The European Medicines Agency (EMA) permits precision measurements of blood flow which may aid in the development of biomarkers of glaucoma-related dysregulation of blood flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.