Abstract
The use of dense gases (supercritical fluids) as extracting agents has been attracting wide interest for years. In particular, supercritical carbon dioxide is considered nowadays as a green and very useful solvent. Nevertheless, the extraction process has a slow dynamics. Power ultrasound represents an efficient way for accelerating and enhancing the kinetics of the process by producing strong agitation and turbulence, compressions and decompressions, and heating in the media. For this purpose, a device prototype for using ultrasound in supercritical media was developed, tested and validated in extraction processes of oil from grounded almonds (55% oil content, wet basis and 3-4 mm particle size) in a 5 L extraction unit. An amount of 1500 g of grounded almonds was placed in a cylindrical basket during the trials inside the dense gas extractor (DGE) where solvent was introduced at different flow rates, pressures and temperatures. In all cases the ultrasonic energy confirmed the enhancement and acceleration of the almond oil extraction kinetics using supercritical CO2. Presently the power ultrasound effect in such a process is being deeply analyzed in a 5 L extraction unit before scaling-up a new ultrasonic system. This technology, still under development, has been designed for a bigger dense gas pilot-plant consisting of two extractors (20 L capacity), two separation units and has the possibility of operating at a pressure up to 50 MPa. The goal of this work is to study the effect of high-power ultrasound coupled to dense gas extraction inside the basket with the product, and to present a prototype for the use of power ultrasound in extraction processes with dense gases inside a new 20 L extractor unit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.