Abstract

Municipal solid waste (MSW) leachate is a highly polluted liquid that accumulates in the landfill and contains a high concentration of toxic pollutants which can pollute the surrounding surface water and groundwater as well, if not treated properly. In this study, an integrated approach of phycoremediation with photolytic ozonation was employed for the leachate collected from the MSW dumpsite which has high Chemical Oxygen Demand (COD) and ammonium (NH4+) levels. Photolytic ozonation treatment was employed as a pre-treatment step under operating parameters of pH: 9.0; Ozone dosage: 5 g/h; UV-C: λ = 254 nm; and contact time: 60 min, in which the COD and NH4+ in the leachate was reduced up to 81% and 95%, respectively. The selected algae Chlorella vulgaris (C.vulgaris) was employed in a lab-scale study to optimize the inoculum conditions in the photolytic ozonated leachate (POL). The specific growth rate of C.vulgaris was observed as 0.14/d in the POL at the optimized condition (inoculum size of 25% (T25)) during the study period of 11 days. High-rate algal pond (HRAP) was employed for the pilot-scale study in controlled environmental conditions as in the T25 experimental run for the assessment of POL treatment and biomass production. C.vulgaris reduced the concentration of pollutants COD, NH4+, and heavy metals (Cu, Fe) in the POL up to 93%, 94%, and 71%, respectively, with the dry biomass productivity of 0.727 g/L/d which is 3 times higher than the biomass productivity of C.vulgaris in freshwater conditions. The biochemical composition (carbohydrates, proteins, and lipids) of the harvested biomass has higher lipid production with lipid productivity of 120 mg/L/d which can be used as a feedstock for the production of value-a dded products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call