Abstract

Although applications of the integrated ultrafiltration (UF) membrane have been investigated for years, most studies have been conducted at the lab scale. Here, a case study on the integrated Fe-based floc-UF process was presented. To enhance membrane performance, both pre-filtration (bag filter) and pre-oxidation were used as pretreatments to remove particles and inhibit the development of microorganisms. Results showed that the integrated process operated stably with pre-treatments, and the UF membrane fouling behavior could be divided into three different phases: slow increase rate (phase I), medium increase rate (phase II), and fast increase rate (phase III). In comparison to those in phases II and III, both natural organic matters and colloids were the main membrane fouling mechanisms during phase I, as the pollutants were not successfully removed by flocs initially. With the continuous injection of flocs, a loose cake layer became the main fouling mechanism during phase II, resulting in the deterioration of membrane fouling. During phase III, however, microorganisms (e.g., Proteobacteria) were inevitably nourished within the cake layer and played an important role in aggravating the degree of membrane fouling. During this integrated membrane-based process, several operating factors, including floc concentration, sludge discharge frequency, and the aeration rate during backwashing, played important roles in determining membrane performance. In addition, except for oxygen consumption, all the effluent quality parameters met the drinking water criteria followed in China (GB5749-2006).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call