Abstract

The influence of hydraulic retention time (HRT of 3–5 h) and temperature (20–25 °C) on performance and microbial dynamics of two pilot-scale upflow anaerobic sludge blanket (UASB) reactors with different granule size distribution (UASB1 = 3–4 mm and UASB2 = 1–2 mm) were investigated for 217 days. Increasing the HRT to 5 h even at a lower temperature of 20 °C enhanced COD removal and biogas production with average of 59 ± 16% (up to 85%) and 73 ± 9 L/(m3·d) (up to 102 L/(m3·d)) for UASB1; 63 ± 16% (up to 85%) and 75 ± 9 L/(m3·d) (up to 90 L/(m3·d)) for UASB2, respectively. This is explained by sufficient contact time between microorganisms and substrate. Acetoclastic methanogenic activity was higher in UASB1 because Methanosaetaceae (produces methane from acetate) dominated (64 ± 4%). However, Methanoregulaceae (29 ± 3%) and Methanomicrobiales_unassigned (20 ± 6%) which produce methane from H2/CO2 and formate were significant in UASB2. The extent of change in the microbial dynamics with HRT and temperature was more obvious in the smaller granule reactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call