Abstract

We developed and tested a pilot-scale photocatalyst-membrane hybrid reactor for water treatment. The performance of the pilot-scale reactor was evaluated by monitoring the degradation efficiency of several organic pollutants and the membrane suction pressure at different operating conditions. The concentration of humic acids rather increased in the initial period of UV illumination and then decreased gradually, which could be ascribed to the photoinduced desorption of humic acids from the TiO2 surface. The decoloring rate of methylene blue was faster than that of rhodamine B, whereas the order of mineralization rates of the dyes was reversed. 4-chlorophenol of 100 ppb was fully degraded under UV irradiation in 2 hours, which suggests that this hybrid reactor would be more suitable in removing micropollutants in water. The reactor was operated with either continuous or intermittent suction mode. In a continuous suction mode, the formation of TiO2 cake layers on the membrane surface occurred and caused a substantial increase in suction pressure. However, no further fouling (or suction pressure build-up) took place with an intermittent suction mode with the 9-min suction and 3-min pause period. The photocatalyst-membrane hybrid reactor system developed in this study could be an attractive option for controlling micropollutants in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.