Abstract
Absolute counting of total leukocytes and specific subset (such as T-cells and B-cells) within small amounts of whole blood is difficult due to the lack of techniques that enables separation of leukocytes from limited volume of whole blood. In this study, a microfluidic chip equipped with a size controlled micropillar array for highly separation of T-cells and B-cells from sub-microliter of whole blood was studied. Based on the difference in size and deformability, leukocytes were separated from other blood cells by micropillar arrays. However, the variability of cells in size, morphology and color intensity along with the spectrum crosstalk between fluorescence dyes make cell detection among pillars extremely difficult. In this paper, an support vector machine supervised machine learning classifier based on both Histogram of Oriented Gradients (HOG) and color distribution features was proposed to distinguish T-cells and B-cells fast and robustly. HOG features were utilized to detect cells from background and noise; color distribution features were employed to alleviate the effect of fluorescence spectrum crosstalk. Experiment showed we achieved average detection accuracy of 94% for detecting T-cells and B-cells from the background. Furthermore, we also got 96% accuracy with cross validation to detect T-cells from B-cells. Both theoretical analysis and experiments demonstrated the proposed method and system has high performance in T-cells and B-cells counting. And our microfluidic cell counting system has great potential as a tool for point-of-care leukocyte analysis system.
Highlights
Leukocytes and their subtypes population numbers change dramatically in the presence of infections, malignancies, autoimmune disorders, and chemical-induced hematotoxicity
T-cells and B-cells are excited (488 nm). 420 frames were captured for the whole filtration zone
A pillar-based microfluidic chip with machine learning algorithm for T-cells and B-cells isolation and detection were studied in this paper
Summary
Leukocytes and their subtypes population numbers change dramatically in the presence of infections, malignancies, autoimmune disorders, and chemical-induced hematotoxicity. In order to develop a compact leukocyte counting system, researchers are actively looking toward microfluidic devices as the platform for the generation translatable cell sorter. The non-inertial forces may have some unexpected physiological effects on the blood component properties which are unsuitable for the downstream application of the separated products. These techniques add to the complexity of the microfluidic devices and normally run at very low flow rates. A perfect blood microfilter can trap all WBCs and pass all RBCs continuously without loss of separation efficiency at different flow rates and cell concentration
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.