Abstract

As a strong tool for the study of nanoscience, the synchrotron hard X-ray nanoprobe technique enables researchers to investigate complex samples with many advantages, such as in situ setup, high sensitivity and the integration of various experimental methods. In recent years, an important goal has been to push the focusing spot size to the diffraction limit of ∼10 nm. The multilayer-based Kirkpatrick-Baez (KB) mirror system is one of the most important methods used to achieve this goal. This method was chosen by the nanoprobe beamline of the Phase-II project at the Shanghai Synchrotron Radiation Facility. To overcome the limitations of current polishing technologies, the use of an additional phase compensator was necessary to decrease the wavefront distortions. In this experiment, a prototype phase compensator has been created to show how to obtain precise wavefront compensation. With the use of finite-element analysis and Fizeau interferometer measurements, some important factors such as the piezoresponse, different actuator distributions, stability and hysteresis were investigated. A global optimization method based on the measured piezoresponse has also been developed. This method overcame the limitations of the previous local algorithm related to the adjustment of every single actuator for compact piezoelectric layouts. The mirror figure can approach a target figure after several iterations. The figure difference can be reduced to several nanometres, which is far better than the mirror figure errors. The prototype was also used to successfully compensate for the real wavefront errors from upstream and for its own figure errors, measured using the speckle scanning technique. The residual figure error was reduced to a root-mean-square value of 0.7 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.