Abstract

The recently developed technique of UVPL imaging has been used to track the path of basal plane dislocations (BPDs) in SiC epitaxial layers. The glide of BPDs during epitaxial growth has been observed and the role of this glide in forming half-loop arrays has been examined. The ability to track the path of BPDs through the epitaxy has made it possible to develop a BPD reduction process for epitaxy grown on 8° offcut wafers, which uses an in situ growth interrupt and has achieved a BPD reduction of > 98%. The images also provide insight into the strong BPD reduction that typically occurs in epitaxy grown on 4° offcut wafers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.