Abstract

We aimed to validate the mathematical validity and accuracy of the respiratory components of the Nottingham Physiology Simulator (NPS), a computer simulation of physiological models. Subsequently, we aimed to assess the accuracy of the NPS in predicting the effects of a change in mechanical ventilation on patient arterial blood-gas tensions. The NPS was supplied with the following measured or calculated values from patients receiving intensive therapy: pulmonary shunt and physiological deadspace fractions, oxygen consumption, respiratory quotient, cardiac output, inspired oxygen fraction, expired minute volume, haemoglobin concentration, temperature and arterial base excess. Values calculated by the NPS for arterial oxygen tension and saturation (PaO2 and SaO2), mixed venous oxygen tension and saturation (PvO2 and SvO2), arterial and mixed venous carbon dioxide tension (PaCO2 and PvCO2) and arterial pH were accurate compared with measured values. Subsequently, arterial gas responses to changes in minute volume of FiO2 were measured in 31 patients and were compared with the NPS prediction for each response. The 95% limits of agreement in predicting the magnitude of change were: arterial oxygen tension -2.07 to 2.47 kPa; PaCO2 -0.33 to 0.67 kPa; and pH -0.023 to 0.033. This investigation has validated respiratory components of the NPS. We recommend the NPS as a clinical tool for predicting the effects of alterations in mechanical ventilation in stable patients in the intensive care unit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call